Nuclear Reactions

Yukawa potential: Vir) = ﬂexp(—-}‘/-}‘g).
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This potential has two limits:
rg — o0 and rg — 0. In the first limit the Yukawa potential becomes the
Coulomb potential

) ghe
Vir) = — g = Z1Zsx,
r
where 7y and Z5 are the charges of the interacting particles and a =
2 /dmeghe ~ 1/137 is the fine structure constant. In the other limit rg — 0,
the potential is

Vir) = iler’c‘iS(r) G = gﬁ_c-pg,

This potential is useful in discussing weak-interaction processes where G' is of
order the Fermi constant G'g. The techniques of Sect. 3.2 will therefore allow
us to treat scattering and reactions due to the weak and electromagnetic
interactions.

Section 3.4 will show how to take into account the fact that the scatter-
ing potential is not fixed, but due to a particle that will itself recoil from
the collision. This will allow us to treat processes where the target is a com-
plicated collection of particles that can be perturbed by the beam particle.
With these techniques, we will learn how it is possible to determine the charge
distribution in nuclei.

Section 3.5 will show how short-lived “resonances” can be produced during
collisions.

Section 3.6 will introduce the more difficult problem of nucleon-nucleon
and nucleon nucleus scattering where the interaction potential can no longer
be considered as weak. This problem will complete our treatment of the
deuteron in Sect. 1.4.

Finally, in Sect. 3.7 we will learn how coherent forward scattering in a
medinm leads to a neutron refractive index. An application of this subject
will be the production of ultra low-energy neutron beams.



To introduce cross-sections, it 1s conceptually simplest to consider a thin slice
of matter of area L? containing N spheres of radius R, as shown in Fig. 3.1.
A point-like particle impinging upon the slice at a random position will have
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Fig. 3.1. A small particle incident on a slice of matter containing N = 6 target
spheres of radius R. If the point of impact on the slice is random, the probability
dP of it hitting a target particle is dP = NnR?/L? = ondz where the number
density of scatterers is n = N/(L?dz) and the cross section per sphere is o = 7R?.

a probability dP of hitting one of the spheres that is equal to the fraction of
the surface area covered by a sphere
NrmR?
dP = —— = ondz o = TR*. (3.4)
1.2

In the second form, we have multiplied and divided by the slice thickness dz
and introduced the number density of spheres n = N/(L?dz). The “cross-
section” for touching a sphere, o = 7R?, has dimensions of “area/sphere.”

While the cross-section was introduced here as a classical area. it can be
used to define a probability dF; for any type of reaction, r, as long as the
probability is proportional to the number density of target particles and to
the target thickness:

dP. = o.ndz. (3.5)

The constant of proportionality o, clearly has the dimension of area/particle
and 1is called the cross-section for the reaction r.

If the material contains different types of objects 7 of number density and
cross-section n; and o;, then the probability to interact is just the sum of the
probabilities on each type:

dP = Z n;0; (3.6)



Because nuclear radii are of order of a few femtometer we can anticipate
that the cross-sections for nuclear reactions involving the strong interactions
will often be of order 1 fm?. In fact, the units of cross-section most often used
is the “barn,”

1b =100fm? =107 m? . (3.7)

We will see in this chapter that nuclear weak interactions generally have
cross-sections about 20 orders of magnitude smaller.

It should be emphasized that (3.5) supposes that the total probability
for a type of reaction is found by summing the probabilities for reactions on
each particle in the target. This assumption breaks down if interference is
important, as in Bragg scattering on crystals or in elastic scattering at very
small angles. In these cases, it is necessary to add amplitudes for scatter-
ing on target particles rather than probabilities. We emphasize that. in fact,
adding amplitudes always gives the correct probability but in most cases the
random phases for amplitudes from different target particles gives a dP that
is proportional to the number of scatters rather than to its square. Equation
(3.5) is therefore applicable except in special circumstances.

While we have introduced the cross-section in the context of particles
incident upon a target, cross-sections are of more general applicability. For
example, consider a pulse of classical electromagnetic radiation of a given
energy density that impinges on a target. A cross-section can then be defined
in terms of the fraction dF’ of energy flur that is scattered out of the original
direction

dF = ondz . (3.8)

We can take n to be the number density of atoms, so ¢ has dimensions of
area/atom. This definition of the cross-section makes no reterence to incident
particles but only to incident energy.

The Thomson scattering cross-section of photons on electrons was origi-
nally derived in this manner by treating the interaction between a classical
electromagnetic wave and free electrons. Consider a plane wave propagating
in the 2z direction with the electric field oriented along the x direction:

E, = Fcos(kz —wt) . (3.9)

The (time averaged) electromagnetic eneregy enereyv flux (energv per unit area
o [ 19 ot 19
per unit time) is proportional to the square of the electric field:

-F?
incident energy flux = % : (3.10)



Suppose there is a free electron placed at the origin. It will be accelerated by
the electric field and will oscillate in the direction of the electric field with its
acceleration given by

cF
r(t) = — cos(wt) . 3.11
i(t) = —cos(wt) (3.11)

The accelerated charge then radiates electromagnetic energy with a power
given by the Larmor formula:
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where () means time-average. The total cross-section defined by (3.8) is
power radiated 8T e? ? N ‘
o= — : = 5\ = 0.665Db . (3.13)
incident energy flux 3 \dmegmec

This is just the famous Thomson cross-section for the scattering of an elec-
tromagnetic wave on a free electron. Quantum mechanically, this can be
interpreted as the scattering of photons on free electrons. Since the energy
flux 1s proportional to the photon flux, the Thomson cross-section is the
cross-section for the elastic scattering of photons on electrons. It turns out
that the quantum-mechanical calculation gives the same result in the limit
fiw < mec?, i.e. that the photon energy be much less than the electron rest
energy. The cross-section for higher energy photons and for photons scatter-
ing on bound electrons requires a quantum-mechanical calculation.

Differential cross-sections

The probability for elastic scattering is determined by the elastic scattering
cross-section

AP,y = oqndz . (3.14)

Going beyvond this simple probability, we can ask what is the probability
that the elastic scatter results in the particle passing through a detector of
area da? at a distance r from the target and angle ¢ with respect to the
initial direction. The geometry in shown in Fig. 3.2 where the detector is
oriented so that it is perpendicular to the vector between it and the target.

The probability is proportional to the product of the probability of a scatter
and the probability that the scattered particle goes through the detector. If
the scattering angle is completely random, the second is just the ratio of da:?
and the area of the sphere surrounding the target



da?

dPeg = dandz—s isotropic scattering . (3.15)

47rr?
The solid angle covered by the detector is df2 = da?/r? so

1
dPay = ‘1—” ndzds2 . (3.16)

where the differential scattering cross section is do /d(2 = 0.1 /47 for isotropic
scattering. In general, the scattering is not isotropic so do/df? is a function
of 6. If the target or beam particles are polarized, it can be a function of the
azimuthal angle ¢.

The total elastic cross-section determines the total probability for elastic
scattering so

27
Tel fd!‘d(Z / dof 51116}%195(6' o) . (3.17)

detector \dx

Fig. 3.2. A particle incident on a thin slice of matter containing n scatterers per
unit volume of cross-section o. A detector of area dz? is placed a distance r from
the target and oriented perpendicular to r. If an elastic scatter results in a random
scattering angle, the probability to detect the particle is dP = ndzo(dz? /47r?) =
ndz(o/4m)ds2, where d2 = 2? /r? is the solid angle covered by the detector.

Inelastic and total cross-sections
In general for a reaction creating N particles
ab— 2y a9...2N (3.18)

the probability to create the particles z; in the momentum ranges d®p; cen-
tered on the momenta p; is given by



do
1P = wdr Ppy . AP 3.19
C Ty T " P1 PN (3.19)

The differential cross-section do/d®py...d3px will be a singular function
because only energy momentum conserving combinations have non-vanishing
probabilities.

The total probability for the reaction ab — 21 ... 2N 18

APaboszy .oy = CTabosay..znMpd2 (3.20)

where the reaction cross-section 1s

do
o = [ d®py... [ a3 d*py ... d*py . (3.21
ab—zy.. N / P1 f PN G dpy P! pN - (3.21)
The total probability that “anything” happens to the incident particle as
it traverses the target of thickness dz is just the sum of the probabilities of
the individual reactions

dP = opeenpdz (3.22)

where the total cross-section is

Tiot — Z a; . (323)

The uses of cross-sections

Cross-sections enter into an enormous number of calculations in physics. Con-
sider a thin target (Fig. 3.1 ) containing a density n of target particles that
is subjected to a flux of beam particles F' (particles per unit area per unit
time). If particles that interact in the target are considered to be removed
from the beam (scattered out of the beam or changed into other types of
particles), then the probability for interaction dP = onpdz implies that the
F' 1s reduced by

dFf = —Fondz, (3.24)
equivalent to the differential equation

dF F
= —— (3.25)

dz [
where the “mean free path” [ is

[ = — . (3.26)



For a thick target, (3.25) implies that the flux declines exponentially
F(z) = F(0)e /1. (3.27)
If the material contains different types of objects ¢ of number density and

cross-section n; and o;, then (3.6) implies that the mean free path is given
by

7= "m0 (3.28)

The mean lifetime of a particle in the beam is the mean free path divided
by the beam velocity v
[ 1
T === —. (3.29)

v NTTtot U
The inverse of the mean lifetime is the “reaction rate”
A = NOtot? . (3.30)

We will see that quantum-mechanical calculations most naturally yield the
reaction rate from which one can derive the cross-section by dividing by nw.
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Fig. 3.3. A box containing two types of particles, a and b. The a particles move in
random directions with velocity v,, and can interact with the b particles (at rest)
to form particles ¢ and d with cross-section o,;_..q. The time rate of change of the
number density of particles a is determined by the Boltzmann equation (3.31).

The reaction rate enters directly into the “Boltzmann equation” governing
the number density n, of particles of type a confined to a region of space that
contains particles of type b (Fig. 3.3 ). If the a particles are destroyed by the
reaction a b — e¢d, we have

dn, g

dt - _? = —NaMp Tab—cdVab - (3-31)




where v,4p is the relative velocity. (Of course it will be necessary to average
the cross-section times velocity over the spectrum of particles.) The solution
is just n,(t) = nga(0)exp(—t/7) as expected from (3.29).

If the region also contains particles of types ¢ and d, particles of type a
can also be created by the inverse reaction so the tull Boltzmann equation is

dn,
dt

= —NgNpOab—scdVab T McNdOcd—sabVed - (332)

General characteristics of cross-sections

The magnitude of a reaction cross-section depends on the energetics of the
reaction (elastic, inelastic-endothermic, inelastic-exothermic) and the inter-
action responsible for the reaction (strong, electromagnetic, or weak). Addi-
tionally, at low energy, inelastic reactions between positively charged ions are
strongly suppressed by the Coulomb barrier. In this section we review how
these effects are manifested in the energy (Fig. 3.4) and angular dependences
(Fig. 3.6) of cross-sections.

Elastic scattering The elastic cross-section depends on whether or not the
scattering 1s due to long-range Coulomb interactions or to short-range strong
interactions. As we will see in Sect. 3.2, the differential cross-section between
two isolated charged particles diverges at small angles like do/df2 64,
The total elastic cross-section is therefore infinite. For practical purposes,
this divergence is eliminated because the Coulomb potential is “screened” at
large distances by oppositely charged particles in the target. Nevertheless, the
concept of total elastic cross-section for charged particles is not very useful.

Elastic neutron scattering is due to the short-range strong interaction so
the differential cross-section does not diverge at small angles and the total
elastic cross-section (calculated quantum mechanically) is finite. The elastic
cross-sections are shown in Fig. 3.4 for neutron scattering on 'H, ?H and
61i. The 'H cross-section is flat at low energy before decreasing slowly for
E > 1MeV. The low energy value, o, ~ 20b, is surprisingly large compared
to that expected from the range of the strong interaction, 7(2fm)? ~ 0.1b.
We will see in Sect. 3.6 that this is due to the fact that the proton neutron
system is slightly unbound if the two spins are anti-aligned (and slightly
bound if they are aligned). For neutron momenta greater than the inverse
range r of the strong interactions, p > h/r [p*/2my, > n2/(r2my) > 1 MeV],
the cross-section drops down to a value more in line with the value expected
from the range of the strong interactions.



The elastic cross-section for SLi shows a resonance at FE, ~ 200 keV which
results from the production of an excited state of “Li that decays back to
1 5Li. The level diagram of "Li is shown in Fig. 3.5. For heavy nuclei, there
are many excited states leading to a very complicated energy dependence
of the cross-section, as illustrated for uranium in Fig. 3.26. The process of
resonant production will be discussed in Sect. 3.5.

The angular distribution for elastic neutron nucleus scattering is isotropic
as long as p < h/R  (R=nuclear radius) as illustrated in Fig. 3.6 and
explained in Sect. 3.6. For p > h/R the angular distribution approaches that
expected for diffraction from a semi-opaque object of radius £.

E\ T T T T T
z - |
= (n.n) \
b |
g
S
It (n.n) N
102 2
= (H,’Y) l H
10—4\ :
1(767 | | | | N _ﬁi
L m\ﬁ\ ]
10 2 (\ T 6
1 04— (n;\{) (n’p) — Ll
10 .
I 100 10°  10° gev)

Fig. 3.4. Examples of reaction cross-sections on 'H, ?H, and °Li [30]. Neutron elas-
tic scattering, (n,n), has a relatively gentle energy dependence while the exothermic
reactions, (n,y) and °Li(n,t)*He (t=tritium="H), have a 1/v dependence at low
energy. The exothermic (p,7y) reaction is suppressed at low energy because of the
Coulomb barrier. The reaction °Li(n, p)°Be has an energy threshold. The fourth
excited state of “Li (Fig. 3.5) appears as a prominent resonance in n°Li elastic
scattering and in °Li(n, t)*He.
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Fig. 3.5. The energy levels of "Li and two dissociated states n —° Li and *H — *He.

The first excited state of °Li decac?fs to the ground state via photon emission while

the higher excited states decay to “H—*He. The fourth and higher excited states can

also decay to n —° Li. The fourth excited state (7.459 MeV) appears prominently as
. 6T = . . . . . 6T

a resonance in n "Li elastic scattering and in the exothermic (n,t) reaction n"Li —

3H*He. The resonance is seen at £, ~ 200keV in Fig. 3.4.

Inelastic scattering Inelastic reactions with no Coulomb barrier have
cross-section dependences at low energy that depend on whether the re-
action is exothermic or endothermic. Exothermic reactions generally have
cross-section proportional to the inverse of the relative velocity, o o 1/v.
This leads to a velocity-independent reaction rate A o« ov. Examples in the
figures are neutron radiative capture (n,7y) reactions. The nucleus “Li also
has an exothermic strong reaction n’Li — *H*He. The resonance observed
in elastic scattering is also observed in the inelastic channel since the resonant
state (Fig. 3.5) can decay to *H*He.

Endothermic reactions have an energy threshold as illustrated in Fig. 3.4
by the (n.,p) reaction nLi — pSBe.

Coulomb barriers The low-energy cross-section for inelastic reactions are
strongly affected by Coulomb barriers through which a particle must tunnel
for the reaction to take place. Cross-sections for two exothermic reactions on
?H are shown in Fig. 3.4. The barrier-free (n,7) reaction n?H — y2H has
the characteristic 1/v behavior at low energy. On the other hand, the (p,Y)
reaction between charged particles p2H — y®He is strongly suppressed at

low energy. Its cross section becomes comparable to the (n.y) reaction only
for proton energies greater than the potential energy at the surface of the °Li
nucleus ~ 3ahe/2.41m ~ 1.8 MeV.
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Fig. 3.6. The differential cross-section, do/d cos # = 27wdo/d (2, for elastic scatter-
ing of neutrons on 'H, “Be and ?"*Pb at incident neutron energies as indicated [30].
At low incident momenta, p < h/Rpuciens, the scattering is isotropic whereas for
high momenta, the angular distribution resembles that of diffraction from a disk of
radius R. Neutron scattering on 'H at high-energy also has a peak in the backward
directions coming from the exchange of charged pions (Fig. 1.13).

High-energy inelastic collisions The Coulomb barrier becomes ineffective
at sufficiently high energy, FE., > Z1Zaahe/ R where R is the sum of the radii
of the nuclel of charges Z1 and Zs. In this case, the total inelastic cross-section
becomes of order of the geometrical cross-section mR2. At energies < 1 GeV,
most inelastic collisions involve a simple break up of one or both ot the nuclei,
leading to the production of the unstable nuclel present in Fig. 0.2. These
are called fragmentation reactions for medium-A nuclel while the breakup of
a heavy nucleus is called collision-induced fission. Fragmentation of a target
by protons or neutrons is called spallation.



S _ L | | !
= 10 Te 1sotopes %, )
5 2 0©000 * ’
e O O ® o —
‘= 10 0
] O ... o
2 3
J 3 . i
é 10 Oo h o
4 B
= 10 N
Q ~ e .
10 | * -
—6]_ i
10 | | | | | |

110 115 120 125 130 135 li|50
fragment mass number A

Fig. 3.7. The production of tellurium isotopes in the fragmentation of *Xe
(790 MeVB/nucleon) on a “7Al target (open circles) and the collision-induced fis-
51011 of #**U (750 MeV /nucleon) on a Pb target (filled circles) [31]. Fragmentation
leads to proton-rich isotopes while fission leads to neutron-rich isotopes.

Figure 3.7 gives the distribution of tellurium isotopes produced in the
fragmentation of 12Xe on a 27Al target and the collision-induced fission of
2381 on a Pb target (filled circles) [31]. Fragmentation of Xe leads to proton-
rich isotopes since mostly neutrons are ejected during the collision. Fission
of uranium gives neutron-rich isotopes because of its large neutron-to-proton
ratio. Reactions like these are the primary source of radioactive nuclides now
used in the production of radioactive beams.

Occasionally, the target and projectile nuclel may fuse to form a much
heavier nucleus. The produced nucleus is generally sufficiently excited to emit

neutrons until a bound nucleus is produced. Such reactions are called fusion
evaporation reactions. This is the mechanism used to produce trans-uranium
nuclei, as discussed in Sect. 2.8. The cross-section for the production of the
heaviest elements is tiny, of order 10 pb for element 110.

For center-of-mass energies > 1 GeV /nucleon, inelastic nuclear collisions
generally result in the production of pions and other hadrons. Collisions of
cosmic-ray protons with nuclel in the upper atmosphere produce pions whose
decays give rise to the muons that are the primary component of cosmic rays
at the Earth’s surface (Fig. 5.4).



Finally, we mention that for center-of-mass energies > 100 GeV /nucleon,
certain collisions between heavy ions are believed to produce a state of matter
called a quark—gluon plasma where the constituents of nucleons and hadrons
are essentially free for a short time before recombining to form hadrons and
nucleons. Such a state is also believed to exist in neutron stars (Sect. 8.1.2)
and in the early Universe (Chap. 9).

Photons We have already calculated the cross-section (3.13) for elastic scat-
tering of low-energy photons on free electrons. Since the cross-section is in-
versely proportional to the square of the electron mass, we can anticipate
that the cross-section on free protons is 20002 times smaller and therefore
negligible. This is because photon scattering is analogous to classical radia-
tion of an accelerated charge, and a heavy proton is less casily accelerated
than an electron.

The most important contributions to the photon cross-section on matter
have nothing to do with nuclear physics. The important processes, shown in
Fig. 5.12, are Compton scattering on atomic electrons

TeTy, (3.33)

Y atom — atom
photoelectric absorption

yatom — atom™ e, (3.34)
and pailr production

V(A Z) = eTe (A7) . (3.35)
Pair production dominates at energles above the threshold Ey = 2mec?.

Just as photons can breakup atoms through photoelectric absorption,
they can excite or break up nuclei through photo-nuclear absorption. The
cross-sections for this process on 2H and 2°®Pb are shown in Fig. 3.8. The
cross-section for dissociation of 2H exhibits a threshold at E, = 2.22MeV,
the binding energy of 2H. The cross-section for dissociation of °®Pb exhibits
a broad giant resonance structure typical of heavy nuclei. Such resonances
can be viewed semi-classically as the excitation of a collective oscillation of
the proton in the nucleus with respect to the neutrons.
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Fig. 3.8. The cross-sections for photo-dissociation of *H and of ***Pb [30]. The
cross-section of Pb exhibits a giant resonance typical of heavy nuclei.

Neutrinos Methods for caleulating neutrino cross-sections will be presented
in Sects. 3.2 and 3.4. Since neutrinos are subject to only weak interactions,
their cross sections are considerably smaller than those of other particles.
For neutrino energies much less than the masses of the intermediate vec-
tor bosons, myec? = 80.4GeV and myzc? = 91.2 GeV the cross-sections are
proportional to the square of the Fermi constant

&

(he)d

By dimensional analysis. this quantity must be multiplied by the square of
an energy to make a cross-section. The cross-sections for several neutrino
induced reactions are given in Table 3.1. For nuclear physics, neutrinos of
energy FE\, ~ 1 MeV are typical so, multiplying (3.36) by 1 MeV?, gives Ccross-
sections of order 10~4¥m?2.

= 5.297 x 10~ m>MeV 2 | (3.36)

Classical scattering on a fixed potential

In this section, we consider the scattering of a particle in a fixed force field
described by a potential V (r). This corresponds to situations where the fact
that the target particle recoils has little effect on the movement of the beam
particle because the kinetic energy of the recoiling target particle can be
neglected. For a beam particle of mass myp and momentum py, incident on a

target of mass my, it can be shown (Exercise 3.5) that the target recoil has
negligible effect if the target rest-energy mc? is much greater than the beam
energy

mye? > By, = \/ mict + p2c? . (3.37)



Table 3.1. The cross-sections for selected neutrino-induced reactions imp
for nuclear physics. The energy range where the formulas are valid are given.
from G% given by (3.36), the cross-sections depend on the “weak mixing .
sin? 0y, = .231240.0002, the “Cabibo angle” cosf. = 0.975+0.001, and the *
vector coupling” ga = 1.267 £ 0.003. The meaning of these quantities is dis
in Chap. 4.
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Since nucleons and nuclel are so much heavier than electrons and neutrinos,
these conditions will be satisfied in physically interesting situations. This
fact, plus the mathematical simplification coming from ignoring target recoil.
Justifies spending some time on potential scattering. We will therefore first
treat the problem classically by following the trajectories of particles through
the force field. This will be followed by two quantum-mechanical treatments.
the first using perturbation theory and plane waves, and the second using
wave packets.

Classical cross-sections

Classically, cross-sections are calculated from the trajectories of particles in
force fields. Consider a particle in Fig. 3.9 that passes through a spherically
symmetric force field centered on the origin. The particle’s original trajectory
1s parametrized by the “impact parameter” b which would give the particle’s
distance of closest approach to the force center if there were no scattering.
The scattering angle #(b) depends on the impact parameter, as in the
figure. The relation #(b) or b(#) can be calculated by integrating the equations

of motion with the initial conditions p, = p, p. = p, = 0.
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Fig. 3.9. The scattering of a particle of momentum p by a repulsive force. The
trajectories for impact parameters b and b + db are shown. The probability that a
particle is scattered by an angle between 6(b) and 6(b + db) is proportional to the
surface area 2wbdb.

The probability

that a particle is scattered into an interval df about @ is proportional to
the area of the annular region between b(#) and b(6 + df) = b + db, i.e.
do = 2mwbdb. The solid angle corresponding to df is df2 = 2w sin#df. The
differential elastic scattering cross-section is theretore
do 0) — 2rbdb | b(O) db
A’ 2wsingdd  |sind  do
A measurement of do/df? determines the relation b(#) which in turn gives
information about the potential V.

(3.38)

Examples

We can apply (3.38) to several simple cases:

e Scattering of a point particle on a hard immovable sphere. The angle-
impact parameter relation is

b = Rcostl/2, (3.39)
where R is the radius of the sphere. The cross section is then

lo

‘1? R4 = o=nR? (3.40)

df?

so the total cross-section is just the geometrical cross section of the sphere.
In the case of scattering of two spheres of the same radius, the total scat-
tering cross-section is o = 47 R2.

e Scattering of a charged particle in a Coulomb potential

Z1 ZQ(E‘“.Q

Vir) =
(r) dmegr

(3.41)



where 77 is the charge of the scattered particle, and Z3 is the charge of
the immobile target particle. This historically important reaction is called

“Rutherford scattering” after E. Rutherford who demonstrated the exis-
tence of a compact nucleus by studying o-particle scattering on gold nuclei.
The unbound orbits in the Coulomb potential are hyperbolas so the scat-
tering angle is well-defined in spite of the infinite range of the force. For an
incident kinetic energy Ej = muv? /2, the angle-impact parameter relation
is

= 272 cot(6/2) . (3.42)

The cross-section is then
do ([ ZyZae? \° 1
a2 \16megEy ) sin*6/2

We note that the total cross-section o = [(do /df2)ds? diverges because of
the large differential cross-section for small-angle scattering:

2
do VAV A 1
) 0<1). 3.44
df? (ihTEgEk) 04 ( < ) ( )

This divergence is due to the fact that incident particles of arbitrarily
large impact parameters are deflected. The total elastic cross-section for
scattering angles greater than #;, is (using df2 ~ 276de for 6 < 1)

(3.43)

2
Zl ZQ(:‘.Q m
0 > Oin) ~ Onin < 1) . 3.45
Scattering of particles in a Yukawa potential
he
Vir) = £ /o (3.46)
r

This potential is identical to the Coulomb potential for » < rg but ap-
proaches zero much faster for » > rg. Unlike the case of the Coulomb
potential, there is no analytical solution for particle trajectories. It is nec-
essary to integrate numerically the equations of motion to find #(b) and
deo /df2. The result is shown in Fig. 3.10 for an incident particle of energy
Ey. = 10ghe/rg. We see that for b < rg (corresponding to @ > 0.1) the
scattering angle approaches that for the Coulomb potential, as expected
since the two potentials have the same form for »/rg — 0. For b > rg, the



scattering angle is smaller than the angle for Rutherford scattering since
the Yukawa force falls rapidly for » > rg. It follows that the differential
cross section for small angles is smaller than that for Rutherford scattering,
diverging as ~2 rather than as #=%. The elastic cross section still diverges
but only logarithmically, o(0yin) X log(fmin). We see from the figure that

a(0 > 0.01) = 7[b(0.01)]* ~ 4mrf . (3.47)
An angle of 0.01 is already quite small and to get a much higher cross-

section one has to go to considerably smaller angles. For the Yukawa po-
tential, ?r-rg therefore gives the order of magnitude of the cross-section

for scattering by measurably large angles. We shall see below that in the
quantum-mechanical calculation, the cross-section is finite.

log do/dQ2

O (radians) ' ‘ O (radians)

Fig. 3.10. The scattering of a non-relativistic particle in a Yukawa potential V' (r) =
ghce™T/m0 /r. The initial kinetic energy of the particle is taken to be 10ghc/rg so
that it can penetrate to about r» = r4/10. The left solid curve shows the numerically
calculated impact parameter b(#) in units of r5. The right solid curve shows the
logarithm of the differential scattering normalized to the backward scattering cross-
section (@ = m). For comparison, the dashed lines show the same functions for the
Coulomb potential V' (r) = ghe/r. For 8 > 0.1, we have b < ry and the two potentials
give nearly the same results. This is to be expected since the two potentials are
nearly equal for r < rg. For b > rg, the Yukawa scattering angle is much less than
the Coulomb scattering angle because the force drops of much faster with distance.
As a consequence, the cross section is smaller.



Much of our knowledge of nuclear structure comes from the scattering
of charged particles (generally electrons) on nuclei. This is because high-
energy charged particles penetrate inside the nucleus and their scattering-
angle distribution therefore gives information on the distribution of charge in
the nucleus. We will see that the correct interpretation of these experiments
requires quantum-mechanical calculation of the cross-sections. However, it
turns out that the quantum-mechanical calculation of scattering in a 1/r
potential gives the same result as the classical Rutherford cross-section found
above. This means that the Rutherford cross-section can be used to interpret

experiments using positively charged particles whose energy is sufficiently low
that they cannot penetrate inside the nucleus.

This is how, in 1908, Rutherford discovered that the positive charge inside
atoms is contained in a small “nuclens.” Rutherford reached this conclusion
atter hearing of the results of experiments by Geiger and Marsden study-
ing the scattering of o-particles on gold foils. While most o’s scattered into
the forward direction, they occasionally scatter backward. This was impos-
sible to explain with the then popular “plum pudding” model advocated by
J.J. Thomson where the atom consisted of electrons held within a positively
charged uniform material. A heavy o-particle cannot be deflected through a
significant angle by the much lighter electron. On the other hand, scatter-
ing at large angle would be possible in rare nearly head-on collisions with a
massive, and therefore immobile, gold nucleus.

After this brilliant insight, Rutherford spent some time (2 weeks [5]) cal-
culating the expected angular distribution which turned out to agree nicely
with the observed distribution. Rutherford’s model naturally placed the light
electrons in orbits around the heavy nucleus.

Another 17 years were necessary to develop the quantum mechanics that
explains atomic structure and dynamics.

We expect the Rutherford cross-section calculation to fail if the electron
can penetrate inside the nucleus. Classically, this will happen for head-on
collisions 1f the initial kinetic energy of the o particle is greater than the
electrostatic potential at the nuclear surface:

e 2Z¢?  2Zalic

* 7 R T R

where 27 1s the product of the o-particle and nuclear charges, « is the fine
structure constant, and we have used R ~ 1.24Y3fm and Z ~ A/2. We
expect the backward scattering to be suppressed for energies greater than this
value. The naturally occurring o-particles used by Rutherford have energies
of order 6 MeV so the effect can only be seen for 2 /Alf 3 < 3 corresponding
to A < 11. Rutherford and collaborators used this effect to perform the first
measurement of nuclear radii.

~ 1.2 A?/3MeV . (3.48)



Quantum mechanical scattering on a fixed potential

In this section, we consider two simple approximate methods applicable to
scattering due to weak and electromagnetic interactions. The first uses standard
time-dependent perturbation theory applied to momentum eigenstates and the
second uses wave packets. The first is an essential part of this chapter because it
can be easily generalized to inelastic scattering. The second is mostly a
parenthetical section intended to improve our understanding of the physics.

To prepare the ground for the perturbation calculation, we first briefly
discuss the concept of asymptotic states and their normalization. Other tech-
nical ingredients, the limiting forms of the Dirac ¢ function, and basics results
of time-dependent perturbation theory in quantum mechanics are reviewed
in Appendix C.

Asymptotic states and their normalization

In studying nuclear, or elementary interactions, we are most of the time
not interested in a space-time description of phenomena.? Instead, we study
processes in which we prepare initial particles with definite momenta and far
away from one another so that they are out of reach of their interactions at an
initial time #g in the “distant past” g ~ —oo. We then study the nature and
the momentum distributions of final particles when these are also out of range
of the interactions at some later time 7 in the “distant future” t — +o00. (The
size of the interaction region is of the order of 1fm. the measuring devices
have sizes of the order of a few meters.)

b

Fig. 3.11. Asymptotic states in a collision

Under these assumptions, the initial and final states of the particles un-
der consideration are free particle states. These states are called asymptotic
states. The decay of an unstable particle is a particular case. We measure the
energy and momenta of final particles in asymptotic states.



By definition, the asymptotic states of particles have definite momenta.
Therefore, strictly speaking, they are not physical states, and their wave
functions e?*/" are not square integrable. Physically, this means that we are
actually interested in wave packets who have a non vanishing but very small
extension Ap in momentum, i.e. Ap/|p| < 1.

It is possible to work with plane waves, provided one introduces a proper
normalization. A limiting procedure, after all calculations are done, allows to
eet rid of the intermediate regularizing parameters. This is particularly simple
in first order Born approximation, which we will present first. The complete
manipulation of wave packets is possible but somewhat complicated. How-
ever, it gives interesting physical explanations for various specific problems,
and we shall discuss it in Sect. 3.3.5.

We will consider that the particles are confined in a (very large but finite)
box of volume L3. We will let L tend to infinity at the end of the calcula-
tion. Besides its simplicity, this procedure allows to incorporate relativistic
kinematics of ingoing and outgoing particles in a simple manner.

In such a box of size L, the normalized momentum cigenstates are

p) = Yp(r) = L=32:Pm/m pside the box | (3.49)
p(r) =0 outside the box

These wave functions are normalized in the sense that

/Ifs‘l-'p(?')\gd?‘r =1. (3.50)

For convenience, we will define here the Hilbert space with periodic
boundary conditions : in one dimension /(L /2) = ¢/(—L/2) and ¢'(L/2) =
(=L /2) (this amounts to quantizing the motion of particles on a large circle
of radius R = L/27). In such conditions, the operators p = (% /i)d/dx and p?
have a discrete spectrum p,, = 27nfi/L. In three dimensions the quantization
of momentum is p = (27h/L)(n1, no, ng), where the n; are arbitrary integers.

The advantage of using periodic boundary conditions is that the states
(3.49) are normalized eigenstates of both the energy and the momentum, as
we wish. This is not the case in the usual treatment of a “particle in a box”
where one requires that the wave function vanish at the edge of the box. The
energy eigenfunctions in this case are

Vp(r) = L732sinngra/L sinnymy/L sinn,mz/L (3.51)

where 14, ny, n. are positive integers and E = 72h*(n2 + n.g +n2)/2mL?. In
this case the energy eigenfunctions are not eigenstates of momentum. How-
ever, both boundary conditions give the same density of states so we need
not worry about which regularization procedure is used.



The orthogonality relation between momentum eigenstates
'f ~ —~ -~
(p\p > - ‘jnln’lﬂngng ‘j-nsng

can also be written in the following manner, useful to take limits,

(plp') = 2rh/L*AL(p—p') . (3.52)

where A%(p — p’) is a limiting form of the delta function discussed in Ap-
pendix (C.0.2).

Since each component of momentum is quantized in steps of 27/ /L, the
number of states in a momentum volume d3p is

r L
dN(p) = (25 +1)(5 3)'d’p = p(p)d’p (3.53)

where 25+ 1 is the number of spin-states for a particle of spin s. This defines
the density of states (in momentum space): p(p) = (2s + 1)(L/27h)3. This
corresponds to a density in phase space (momentumxreal space) of (2s + 1)
states per elementary volume (277)3.

In what follows, we will be interested in the number of states in an interval
dE. To obtain this, we note that the number of states within a momentum
volume d®p can be written as

dN(p) = p(p)d’p = (28+1)f2i)3 pdpds2 . (3.54)
L

where df? is the solid angle covered by d®p. Taking FdE = ¢* pdp (which
holds both in the relativistic and non-relativistic regimes), we find the number
of states in the interval dE and in the solid angle df? is

L 4 pE

AN(E.d2) = (25 +1)(55)" 5 dBdQ. (3.55)
mr C

Cross-sections in quantum perturbation theory

The simplest way to calculate cross-sections in quantum mechanics is to use
standard time-dependent perturbation theory (Appendix C). The idea is to
describe the system by a Hamiltonian that is the sum of an “unperturbed” Hy
and a perturbation H,. In the present context, Hgy will represent the kinetic
energy of the incoming and outgoing beam particles and the perturbation H,
will be the interaction potential (which acts for a very short time).

Perturbation theory gives the transition rates between energy eigenstates
of the unperturbed Hamiltonian, i.e. between the initial state |:) of energy
E; and one of the possible final states |f) of energy Ef. The first order result



18

2T .
Moy = 2R 6By — B (3.56)
where 6(F) satisfies
/ S(E)E = 1. (3.57)

and is a limiting form of the delta function discussed in (C.0.2). The dimen-
sion of §(F) is 1/energy so the transition rate A has dimension of 1/time as
expected.

If higher-order perturbation theory is necessary, energy will still be con-
served in the transition rate since energy conservation is an exact result due
to the time-translation invariance of the Hamiltonian. The more general tran-
sition rate including higher-order effects is then written as

(fIT15)|* 8(Ef — E) . (3.58)

21
Aisf = ?|

where 1" 1s the “transition matrix element.” In the context of scattering the-
ory, the first order result, 7' = H;, is called the “Born approximation.”

For the initial and final states, we choose plane waves of momentum p
and p’ as defined above

eip-’r'f?i eip’ r/h

bi(r) = R bp(r) = SR (3.59)

where L3 is the normalization volume. The classical scattering angle is defined

by

p-p
CDSE" = m . (3.60)

Of more importance for quantum calculations is the momentum transfer

g=p -p. (3.61)
and its square
> = q-q = |p|> + [p']* —2p-p. (3.62)

For clastic scattering we have |p| = [p’| = p so

q° = 2p*(1 —cos#) = 4p?sin?#/2  (elastic scattering) . (3.63)



The small angle limit is often useful:

q° ~ p*0* O« 1. (elastic scattering) . (3.64)
The matrix element between initial and final states is then
, | N Vip—1p)
WVIp) = 75 f A Nt 2 (3.65)

It is proportional to the Fourier transform of the potential
V(q) = / ST/ ()3 (3.66)

Note that the dimensions of V defined here are energy x volume.
The transition rate to the final state is
27 |V (p = ')
— §(E'—F) . 3.67

)\z‘—>f -

P

Fig. 3.12. Scattering of a single particle by a fixed potential.

We cannot measure the transition rate to a single momentum state so we
must sum the transition rate over a group of interesting final states. Within
a volume L3, the number of momentum states in the momentum range d*p’
is given by (3.53). Multiplying (3.67) by this number of states we get the
total transition rate into the momentum volume d3p

L\® .  2¢|V(g)?.

Md3p) = (=) &Pp'=——6(E'—F). 3.68
@) = (57 ) ¢ FEHEAE ) (3.65)
We carefully drop the factor (2s 4+ 1) in the number of states. We do this
because it is often the case that only one spin state is produced with high
probability in a reaction. When this is not the case, it is then necessary to
sum over all possible final spin states.




The number of states in the momentum range d£’ and momentum ori-
ented into the solid angle df2 at angles (6. ¢) with respect to a given direction
is given by (3.55) so the total transition rate into these states is then

wh 2 h LS

We use the delta function to integrate over energy in order to find the tran-
sition rate into (energy-conserving) states within the solid angle d{2

E'! (E.F)Q
L3 472544

AdE',d2) = ( L ) PE o IV (Q)Pa(}; _E). (3.69)

AdR2) = V(q)?de . (3.70)

where o/ = p'¢?/E’ is the velocity of the final state particle.

We remark, as mentioned above, that the crucial factor in (3.70) is the
presence of the modulus squared of the Fourier transform of the potential
V(q)|?. This is the main result of this calculation. Information on the differ-
ential cross-section gives us direct access to the potential through its Fourier
transform. This result is very concise and elegant. It is basically the same
effect that one encounters in diffraction phenomena. If one neglects multiple
scattering, the amplitude of the diffraction pattern is the Fourier transform
of the diffracting system (crystal, macro-molecule, etc.).

Elastic scattering

For elastic scattering, F' = F, so the transition rate is
v E?

L3 4n2pt et
where v is the velocity of the initial state particle. The transition rate is
proportional to the density of scattering centers (n = 1/L3) and to the ve-

locity of the projectile. Using (3.30), we divide by these two factors to get
the differential cross-section

do E?

A 4r2(he)t

AdR) = V(q)|*de . (3.71)

Vig)?, (3.72)

where £ = \/ p2¢2 + m2c* is the energy of the incident particle and V is given
by (3.66).

We remark that in the above expression the normalization parameter L
cancels off identically. Therefore, we can readily take the limit L — oc.
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Fig. 3.13. The scattering of a non-relativistic particle in a Yukawa potential V' (r) =

ghce™ /™ /r. The momentum of the particle is p = 10f/r0. The solid line shows the
quantum mechanical differential cross-section (3.75). For small angles 6 < h/(pro)
the cross section is flat, avoiding the divergence present in the classical calculation
(Fig. 3.10). At large angles 8 > h/(prg) the scattering follows the Coulomb cross-
section shown by the dashed line.

As an example of potential scattering, we can take the Yukawa potential

) he
V(r)=LZer/mo, (3.73)
where the range of the interaction is the Compton wavelength ro = i /M ¢ of
the exchanged particle of mass M. The Coulomb potential between particles
of charge Z; and Zs corresponds to ¢ = Z1Z2c and 79 — oo. The Fourier
transform V' (q) for the Yukawa potential is

- 47 ghe B2 47g(he)?

V = = ! 3.74
(a) g+ (hi/r0)? q*c* + M?*c* (3.:74)

which gives a differential cross-section

— = 4g°%(he)? ( L )2 : (3.75)

4p? 2 sin? 0/2 + M2

T

where we have used (3.63). The cross section, shown in Fig. 3.13, does not
diverge at small angles like the classical cross-section. The total elastic cross-
section is therefore finite:

oo = 8mg* (he)? by 1 (3.76)
el = oy € M24 1+ 2}32/;";1[2(1‘2 - .




We remark that in many strong interaction calculations, the Born approxi-
mation is not valid. Indeed the dimensionless parameter ¢ is larger than one
and perturbation theory does not apply. Nevertheless, the above result bears
many qualitatively useful features.

In what follows, we consider cases where the Born approximation is valid.
There are two simple limits corresponding to the mass of the exchanged
particle M ¢? being much greater than or much less than pe.

e Mc? < pe,ie. ro > hi/p. As illustrated in Fig. 3.13, the differential cross
section is angle-independent for # < i /(prg) and Rutherford-like for # >
i/(pro). We can then find the cross-section for the Coulomb potential by
taking the limit ry — oo and setting g = Z1 Zsa:

1 717\ E \® 1
a7 [ . . (3.77)
ds? 4Teg 2p%c? ) sin*6/2
In the non-relativistic limit, £ = mc?, By = p*?/2m, and the formula
reduces to the classical Rutherford cross-section (3.43).
do  (ZiZ:2\? ([ 1 \? 1 (3.78)
d2 — \ 167eg p?/2m ) sin*0/2 '

This coincidence of the classical and the quantum theory seems, at first,
amazing. It is actually quite simple to understand by dimensional analysis.
The non-relativistic cross-section (3.78) calculated quantum mechanically
turns out to be independent of fi. It is proportional to the square of the
only length, a = ¢? /4meg(p?/2m), that is linear in e?/4men and a combi-
nation of powers of p, m and 7. Since this is the only length available, the

quantum cross-section must be fi-independent and can therefore agree with
a classical cross-section, also hi-independent.? The same is not true for the
Yukawa potential where the differential cross-section derived from (3.74)
depends on 7 and consequently cannot agree with the classical calculation,
as seen by comparing Figs. (3.10) and (3.13). It is the existence of another
length scale, rq, that allows one to form a cross-section that depends on 7.

In the case where the incident particle is ultra-relativistic, E' ~ pc, we

have
2 3 o\ 2
d._cr: AVATE ?'e_( 41 - (3.79)
ds? 2 E ) sin®6/2

The cross-section is proportional to a? and to the square of the only length,
hie/E, that can be formed from 7, ¢, and E. (In the relativistic limit, the
cross-section no longer depends on m.)



o Mc? > pe, ie. 1o < h/p. In this case, the differential cross-section is
angle-independent for all #

do 2E? ) G?E?

10 = 2 () le. o= ()i (3.80)
where

, g(he)?

Not surprisingly, this cross-section results also from the delta potential,
l.e. a contact interaction.

V(i) = G&3(r) =V(q) = G. (3.82)
This potential is a good approximation for neutrino interactions like
Ve~ — Vee . (3.83)

From Table 3.1, we see that in this case ¢ x Gy where Gy is the Fermi
constant.

3 Another puzzle lies in the fact that (3.77), which obtained in perturbation theory,
actually coincides with the exact non-relativistic result, which can be calculated
analytically with the Schodinger equation (see for instance A. Messiah, Quantum
Mechanics vol. 1, chap. XI-7). This “miraculous” coincidence comes from the fact
that since Coulomb forces are long range forces, one is not allowed, in principle, to
make use of plane waves as asymptotic states. One should rather use Coulomb
wavefunctions, defined in Messiah, as asymptotic states. The miracle is that
the sum of the correct perturbation series gives exactly the simple plane-wave
formula. This is again related to the fact that h is absent in the classical result.

Quasi-elastic scattering

Potential scattering most naturally applies to elastic scattering because of
the classical limit of a light particle moving through the force field of a fixed
heavy particle. However, in the quantum treatment, we saw that the potential
simply serves to calculate a matrix element between initial and final states. It
is not surprising therefore that the same formalism applies to “quasi-clastic”
scattering where the light particle changes its nature (i.e. its mass) when it
interacts with a fixed particle. Obvious candidates are the weak interactions
of leptons scattering on nucleons, e.g.

VeD ¢+ € 1. (3.84)



We note that the reaction going to the right is endothermic and the reaction
going to the left is exothermic. Since these two reactions are due to the
exchange of W bosons, we can use a delta-potential of the form (3.82) and
rely on the fundamental theory of weak interactions (Table 3.1) to provide
us with the effective & for each reaction.

The rate calculation proceeds as in the elastic case up to (3.70) at which
point we have to take into account the fact the the initial and final state
momenta are not equal. Since we will want to factor out the initial state
velocity, we write the rate as

v v (E)?
L3 v 47r2ht et
corresponding to a cross-section

do o (BN L
= U aena 3.86
10 ~ o ania V@l (3.86)

For the delta-potential, the angular distribution is isotropic and the cross-
section is

ANd2) = Vig)|?ds2, (3.85)

oV ER
v mhtet '
At sufficiently high energy, the initial and final state velocities approach ¢

so the factor v’ /v is of no importance. At low energy, this factor generates a
very different behavior for the two reactions.

T =

(3.87)

The endothermic reaction V.p — e™n has a threshold neutrino energy of
Ein = (my +me — -ﬂ'it.p)(:?2 — 1.8 MeV. Near threshold, the final state positron
has an energy £’ ~ mqc? and a velocity v/ ~ \/ 2(Ey — Eiy)/me. The initial
velocity for the nearly massless neutrino is v ~ ¢ so the cross-section is

2(E\, — E\y, 1/2 Mec?)?
o= ( (Ev —_ )) %02 E, > Ey, . (3.88)

MeC
The situation for the exothermic reaction e™n — V.p is quite different.
As the velocity v of the positron approaches zero, the energy E’ of the final

state neutrino approaches (1, + m. —mp)c? = 1.8 MeV so the cross-section
approaches
s € (my + -?1‘1-94— myp )2 o2 (3.89)
v wh*ct
The cross-section is proportional to the inverse of the velocity, as anticipated
in Sect. 3.1.5. The reaction rate, proportional to the product of the velocity
and the cross-section is therefore velocity independent.




Scattering of quantum wave packets

The calculations of the last section were very efficient in yielding reaction
rates and cross-sections in cases where perturbation theory applies. However,
they are not able to elicit various physical properties of interest. In this
section, we will provide a more physical description using wave packets, which
we shall use later on.

In quantum mechanics, particles are represented by wavefunctions, v/(r)
giving the probability |¢/(r)|?d3r to find the particle in a volume d®r near .
If the particle interacts only via a potential V (r), the wavefunction satisfies
the Schrodinger equation

e

5 OV
H ot 2m

As illustrated in Fig. 3.14, a scattering experiment on a single target parti-

V20 + V()i (3.90)

cle with a short range potential corresponds to the situation where V(1) ~ 0
except in a small region r < R near the target particle. Initially, the wavefunc-
tion is a broad wave packet, 5, that propagates freely in the » direction far
from the target. The transverse width of the wave packet is taken to be much
greater than I? so that the entire potential is “sampled” by the wavefunction.
When the wave packet reaches the target (¢ = 0), the interaction with the
potential generates a scattered wave packet 15 which now accompanies the
transmitted wave packet.

The essential result of the calculation that follows is that the scattered
wave is found by summing spherical waves emanating from each point in the
region where V' £ 0. This is illustrated in Fig. 3.15. It will turn out that the
scattered wave from each point is proportional to the product of the potential
and the incident wave at that point. This is physically reasonable since the
scattered wave must vanish when either the potential or the incident wave
vanishes. When one integrates the waves over the region of non-vanishing
potential, the result (3.113) that the scattered wave is proportional to the
Fourier transform of the potential will emerge in a natural way. Physically,
this comes about since, as illustrated in Fig. 3.15, the waves add coherently
in the forward direction but with increasingly random phases away from the
forward direction. This leads to a decreasing cross-section with increasing

angle. Mathematically, this is just what the Fourier transform does since it
is maximized at g = 0 (6 = 0).



transmitted
wave

Fig. 3.14. A wave packet that impinges upon a region with V' (r) = 0 will interact
in a way that will produce a scattered wave packet and a transmitted wave packet.
The probability to find the particle in the box in the scattered wave is proportional
to the differential scattering cross-section, do /df2.

We now start the wave packet calculation of the differential cross-section.
This cross-section is related to the rate of particles counted by a detector
placed at an angle ¢ with respect to the beam shown in Fig. 3.14. The rate
is given by

dNaet . . do

where N7 is the number of target particles and F is the incident particle
flux. We average the flux over some arbitrary time 1" much greater than the
time of passage of the wave packet. The mean incident flux is given by the
probability to find the incident particle near the z-axis:
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Fig. 3.15. In the Born approximation, the scattered wave at any point far from
the region of V' 3£ 0 is the sum of spherical waves emitted at each point =’ in the
scattering region. The figure shows who such waves, one emitted at r, and one
at r,. The phase of the scattered wave at the point = is k(z' + [r — 7|). Only
in the forward direction is this phase independent of r’. In other directions, the
phase depends on 7’ so the spherical waves do not sum coherently. This results in
a diminishing of the cross-section for angles satisfying |p" — p|R > h.

1 [~ .
Flr=y=0,2) = Tf dz|thin(z =y =0, 2,t < 0)]* . (3.92)
We use a wave packet that is sufficiently broad that this flux is constant over
the entire extent of the region with V' #£ 0.
The detection rate is proportional to the probability to find the particle
in the box shown in Fig. 3.14:

— D

di?\'rdet 1 2 > 21,/ 2
= —(d# dr r=|ee(r. 0.t > 0)]° . 3.93
T = @R [0 > 0) (3.93)
Using (3.91), we find
b (1 2 2
dq _ fdx."|i.,.5c(;'._9,t>} 0)[= (3.94)
df? [dz [thin(x =y =021t <0

To calculate the differential cross-section we need only calculate 5. for a
given 1;,. To do this, it is useful to express the wavefunction as a superposi-
tion of the energy eigenfunctions g (r) satisfying the eigenvalue equation
., i | ,.
—ﬂv VvE(r)+V(rt)ve(r) = Eve(r). (3.95)
For V' = 0 the eigenfunctions are just the familiar plane waves, exp(ip - /i)
and a superposition makes a wave packet of the form

1
(27)3/2
where k = p/fi and w(k) = E(p)/h. With V' = V(r) # 0, far from the
target, » > R, the eigenfunctions are sums of plane waves and radial waves
emanating from the target:

_1;.-.1(?7_&) _ ﬁ/dghﬁ(k) [eik-r_l_@eikr] e—iw(k}t - (397}

b, t) = f &Pk o (k) eler—w k) (3.96)



The first term in the integral represents the initial and transmitted wave
packet and the second term is the scattered wave. (We will see that the
second term integrates to zero for ¢ < 0 so it does not contribute to the
initial wave packet.) The “scattering amplitude” f(#) is a function of the
angle between the momentum p and the position vector r:

k-r
cosO(k,r) = . (3.98)
k7|
Since f(#) has the dimensions of length, we can anticipate that
do

10 = F@)* . (3.99)

To describe a particle impinging on the target along the = direction we
take &(k) to be strongly peaked at kg = (ky = 0,ky = 0,k, = ko = po/h).
Therefore only the values of k near kg will contribute. We therefore expand
w(k)

hiw(k) = E(po) + VE(p) - (p — po) +.
= E(po) + volp —po) + ..., (3.100)

where vg 1s the group velocity. For a wave packet representing a massive
particle, the group velocity is the classical velocity vg = po/m. Keeping only
the first two terms in the expansion, the first term of (3.97) is

| 1
hin(r,t) = We(

where the “envelope” function is

kuz—wut}ﬁ-}env (71 _ ’U(}ﬂ T (3.101)

Ve = vot) = [ (i) elbbor =) (3.102)

We see that v, is the product of a plane wave and an envelope that is a
function only of r — wot, i.e. the envelope moves with the group wvelocity.
For example, if ¢(k) is a real Gaussian function peaked at k — kg = 0, then
the envelope will be a Gaussian peaked at r — vot = 0, i.e. at r = vot, with
the variances of the Gaussians satistfying the Heisenberg uncertainty relations

OxOp, = OyOp, = 0,05, ~ h. Including higher-order terms in the expansion
(3.100) leads to spreading of the wave packet at large times.

The scattered wavefunction has a similar structure:

Vre(r,0,8) = 1) ithar—aot) f Aok (k) elhe ko) (r—vat) (3.103)

T



where we have dropped a factor exp(i(k2 +k7)r/ko) which is near unity for a
sufficiently wide wave packet. We have also taken f(f) out of the integral since
o(k) is strongly peaked around kg and therefore (3.98) is well approximated
by

1630*?’

cost ~ : (3.104)
kol |r|
Comparing (3.102) and (3.103), we see that
| O
[tse(r — vot, 0, 1)]* = ‘fgg)‘ [im(z =y =0,2=r—vot)]*. (3.105)

This tells us the scattered wavefunction is simply a replica of 15, that is scaled
down by a factor f(f)/r. Note also that (3.105) implies that the scattered
wave vanishes for ¢+ < 0 since it is proportional to the incident wave at
(t < 0,z > 0) which vanishes.

Substituting (3.105) into (3.94) we find the required identification of the
differential scattering cross-section and the square of the scattering amplitude
(3.99).

We now need to find the relation between f(#) and the potential V(7).
This is easy to do if the potential is sufficiently weak that the wave packet
is only slightly perturbed as it passes through the potential. We rewrite the
eigenvalue equation (3.95) as

(V2 = ED)p(r) = 2mV (r)p(r) /B> (3.106)
where k = v2mE /h. We will look for solutions of the form

e = % 4+ Ypa . (3.107)
where the first term is a solution of the eigenvalue equation with V' = 0

and the second term is a particular solution to the equation with V' #£ 0.

Since the effect of the potential is assumed to be small, it should be a good
approximation to replace the wavefunction of the right-hand side of (3.106)
with the incident plane wave:

(V2 = I n(r) = 47S(r) . (3.108)

where

S(r) = 2mV (r) exp(ik - ) +
Arh

For [: = 0 this is the Poisson equation of electrostatics with the electrostatic

potential replaced by . (r) and the charge density replaced by S(r). The

solution is well-known:

(3.109)



Drae(r) = = / S sy (h=0). (3.110)

4 r—r|"
For k # 0, the solution is only slightly more complicated:

| 1 ik|r — 7’
Prselr) = = [ asr ERUKT — )

S(r') . 3.111
4 7 — 7| (") ( )

This formula has a simple physical interpretation: the scattered wave is a
sum of spherical waves generated at each point 7’ in the potential well and
having an amplitude proportional to S(r") oc V(7).

Equation (3.111) can be written as

2m ‘/'dg_?_,-exp(ﬂ"]'"l_ ”JDITXP(”‘TZI) Vi(r) . (3.112)
r—r

T.i';-'k sC (7') —

We are interested in 1, far from the scattering center in which case we
can approximate ' = 0 (in the denominator) and |[r — v'| ~ r — 7 - #'/r
(in the numerator). A particle observed at r will be interpreted as having
a momentum p’ = por/r implying |r — v'| ~ r — k' - ' /kg so the scattered
wavefunction is
2'?'?'l.eikr

dmr

Up(r) = /dg'rflf"(-?")exp(iq ' /1) . (3.113)
where ¢ = p—p’ is the momentum transfer of magnitude |q|? = 2p2(1—cosf).
We see that the scattered wave is proportional to the Fourier transform of
the potential.

Vig) = / /MY (p)dr (3.114)
The differential cross section is then
d m2 .
R\ (3.115)

d2 472
as found in the previous section.
Equation, (3.115) tells us that the cross-section takes an especially simple

form if g =0
do m? . 2
10 (q=10) = TS (f V (-r)dB-r) (3.116)

Since g2 = 2p?(1—cos#), this condition is met either in the forward direction,
# = 0, or in the low-energy limit where the de Broglie wavelength is much
greater than the range of the potential, i /p > R. For ¢* # 0, the exponential
in the integrand is an oscillating function of 7’ so the integral is suppressed.



This can be intuitively understood by saying that far from the region where
V' # 0, the spherical waves generated at different positions are not entirely
in phase and therefore partially cancel. As seen in (3.112) and in Fig. 3.15,
only for ¢ = 0 or for fi/p > R is the phase independent of r’ so the spherical
waves are entirely in phase at the observer’s position r.

Fig. 3.16. A wave packet of central momentum po = hko that impinges upon
a region with V(r) % 0. The scattered wave packet at r is the superposition of
spherical waves generated at each point r’. A particle observed at r will be inter-
preted as having a momentum p’ = por/r implying a momentum transfer squared
of |q|* = [p’ — p|* = 2p3(1 — cosh).

The suppression of the cross-section for # # 0 because of destructive
interference is quite different from the classical case. Here, the large angle
cross-section is suppressed simply because the particle trajectory must pass
near the center of the potential in order to produce a wide-angle scatter.

While the decline of the cross-section with increasing scattering angle
has different origins in quantum and classical mechanics, we saw previously
that the classical and quantum calculations may give identical answers as
long as g° # 0. In fact, what distinguishes quantum scattering from classical
scattering is that in quantum scattering the cross-section must be isotropic
for R <« 1. This condition is met at all scattering angles if the de Broglie
wavelength of the incident particle is much greater than the range I? of the
potential. This is equivalent to the condition

2 - N2 2
(ko) _ SMeVIGEV (ljf?m) ‘

2m  8R2Zmc? me?
For incident energies below this limit, the scattering must be isotropic. For

(3.117)

incident energies above this limit, the scattering will still be isotropic at small
angles:



(3.118)

) he (5Mev>”2 (1 GeV)UQ 1fm
< — - - -

V2(p2/2m)mc2R p*/2m . R
where we have taken the small-angle limit (1—cos #) = 6% /2. For angles larger
than this values, the cross-section decreases, as seen in Fig. 3.6.

mac

Particle-particle scattering

We now return to the treatment of scattering using time-dependent perturba-
tion theory as in Sect. 3.3.2. In this section, we complicate slightly the scat-
tering problem by taking into account the recoil of the target particle. The
immediate result will be that the translation invariance of the Hamiltonian
enforces momentum conservation, a fact that was ignored in fixed-potential
scattering.

Scattering of two free particles

We consider now the scattering to two particles, 1 and 2, with initial momenta
p1 and po, and final momenta pj and p5. We take the potential energy to be
V(ri—7r9), i.e. a function only of the relative coordinates of the two particles.
The conservation of momentum will be a consequence of the assumption that
the interaction potential V (71 — r2) is translation invariant.

Fig. 3.17. Scattering of two particles with recoil.

The treatment of this problem follows the treatment of scattering on fixed
potential starting with the transition rate given by (3.56). The initial and final
state wavefunctions are now

_ elP1-T1 oip2-72 _ eipi ‘r1 eipé-rz
Vi(ri,r2) = 13/2 [3/2 Vp(ri,re) = [3/2 [3/2 - (3.119)
The matrix element between initial and final states is
. 1 , / : r i
(fIV]i) = — el(P1—p1)-7r1/hi(P2—py)-ra/hy) (rq — T‘g)dBT‘ldS?‘g

= 75



1

= 76 el(P1—p1)-(r1—72)/h i(P1+P2—P) —sz}-h/ﬁ[f(rl _ T’g)dB’rldBT‘g _

Replacing the integration variable r{ by r = r{ — r5, we find

qa Ve =1
(FIV]i) = ( 16 1) (270)° A7 (p1 + p2 — P — DY) - (3.120)
where
1 sinp;L /2%
3 _ inlnenat i Sty
AL(p) — é:]ﬂ;!‘; z (ﬂ_ pi ) (3121}

is a limiting form of the three-dimensional delta function (see Appendix
C.0.2). The matrix element is the product of the Fourier transform of the
potential introduced previously and an oscillating function (3.121) whose
role, when squared, is to force momentum conservation:

L3563 (p)

AP = - 3.122
Substituting into (3.56), the transition rate to the final state is
27 [V (p1 — p))I? .
Ny = LIRSy B 2708 1+ p - )

The number of states within the momentum volume d*p/d3p), is

B L3d3prl L3d3p!2

dN = ) 3.123
@rh) (2nh)? (3123)

The total transition rate into these states is then
A(d*py, d°ph) = (3.124)

L’ 27 [V (p1 — P2 .
(ﬁ) dgpidgpfz? 16 1 f’(Ef - E)53(P1 + P2 —P"l —sz) .

Integrating over d®*pl, we find the transition rate

Adph) = (3.125)
L\?* 21 |[V(py — p’)|2
(ﬁ) dgpif| ( 1L5 1) 0(E} + Ey — E1 — Ey)

where E} = Fs(p1 + p2 — p}) is determined by momentum conservation.



This is the same transition rate as in the fixed potential case (3.68) except
that the energy-conservation delta function now includes the effect of nuclear
recoil. If the nuclear recoil is negligible, the reaction rate is identical to that

calculated for a fixed potential. In particular, for a heavy target at rest, we
have Ey = mac? and E) = mac? + (ph)?/2ms and
3 ~
L 2w |V P?
ANd’p)) = (=— ) &P L2 5(EY — Er + (ph)?/2m2) |
@) = (g5 ) €TI0 -y )22
which reduces to the fixed potential result when mqy — oc.
Another interesting limit is the collision of two ultra-relativistic particles.

We treat the problem in the center-of-mass so that Fy = Fy = E.,, /2. The
transition rate is

or
AdR,dE)) = (3.127)
2c 1 ?
= (ﬁ) d2py BB, o |V (p1 — p)IP6(2E] — 2E1) .

Dividing by the factor 2¢/L3 gives the cross-section (where L cancels off
identically).

A simple example is high-energy neutrino—electron elastic scattering in
which case V' o GGp. This gives isotropic scattering in the center-of-mass

do FE

— SLLU 3.128
10 = a2 (3.128)
with a total cross-section of
G E?
oo —= (3.129)
m

The correct numerical factors are given in Table 3.1.

By taking into account the recoil of the target, we have introduced that
added constraint of momentum conservation into the cross-section. Since mo-
mentum conservation is the result of the translation invariance of the Hamil-
tonian, we can anticipate that it will hold in more general reactions between
two (or more) free particles. Consider a reaction

a1 +as — by +by+ ...+ b, . (3130)



The initial momenta are p; and ps with p = p; + p2 being the total momen-
tum and £ = F; + E5 the total energy. The final state momenta and energies
are q;, = 1,....n and E..

We can anticipate that the cross-section will be of the form

27

Ly

do =

dBQI dBQn
(2nh)® " (2nh)3

% 8(p — Yaqi)d(E — YE!) (3.131)

where ' is the square of the relevant transition amplitude. This expression
only has meaning after we integrate it over four independent variables (for in-
stance one momentum and one energy) in order to remove the delta functions
coming from the conservation of energy and momentum.

Finally, we note that, in general, the relative velocity vy of the initial
particles is

vo = ((v1 — v9)? — (01 A wa)2/c2)? (3.132)

This expression must be used if the initial particles are not collinear.

u A v means the wedge product of any multivectors u and v.

uNv=+UXV)if yve R


https://en.wikipedia.org/wiki/Multivector

